Kinetics and Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst

Balamurugan Dhandapani and Shigeo Ted Oyama*

. Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, U.S.A.

(Received February 13, 1995)

The ozone decomposition reaction to molecular oxygen was studied in a flow reactor on a MnO_2 / γ - Al_2O_3 / cordierite catalyst. The rate expression is found to depend on ozone concentration, $r_{O3} = k(O_3)^{0.68}$, but not on O_2 or H_2O partial pressure. A reaction sequence based on an ionic type intermediate with superoxide (O_2^{-1}) or peroxide (O_2^{-2}) character is proposed to explain the kinetics.

Ozone is a powerful oxidant, and in the range of 0.1 - 1 ppm causes headaches, throat dryness and damage to mucous membranes 1 , so must be removed from human environments. Major sources are photocopiers, laser printers, sterilizers, and aircraft air. Most of the work in the area of decomposition of ozone on heterogeneous catalysts is reported in patents, with very few fundamental studies published in the open literature $^{2-4}$. In this paper the effect of $\rm O_3$, $\rm O_2$ and $\rm H_2O$ partial pressure on ozone decomposition was studied over a $\rm MnO_2$ / γ - $\rm Al_2O_3$ / cordierite substrate to obtain insight on the reaction mechanism.

Straight pore monoliths (5.1 cm x 5.1 cm x 1.3) made of cordierite (2MgO·2Al₂O₃·5SiO₂) (Corning, part no. 9475) with a standard cell density of 400 cells per in² (cpsi) or 60 cells/cm², (square pores of 0.12 cm size) were used. The monoliths were acid leached in 1.5 N HNO₃ solution for 9 h at 368 K to open up clogged pores and to prepare the surface for wash coating ⁵. Leaching the surface of the cordierite produces better bonding for the subsequent washcoat than the air-fired surface ⁶. The surface area of the cordierite increased from 1.5 m²g⁻¹ to 6.5 m²g⁻¹ by this procedure. The leached cordierite was coated with a slurry of 20 % γ -Al₂O₃ (Vista Chemical Co., 150 m²g⁻¹, particle size 65 μ m) in three stages with calcination at 773 K at each stage. A uniform coating of controllable thickness which typically was 5-6 wt % of the substrate was obtained. The MnO₂ was deposited on the support by multiple impregnation of a Mn(NO₃)₂-9H₂O (ultra pure, Johnson Matthey Company) solution. The sample was

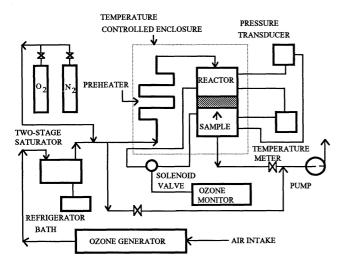


Figure 1. Schematic representation of the testing equipment.

dried at 423 K and calcined at 773 K for 3 h. The loading of MnO_2 was 10 wt % of the γ -Al₂O₃ support. Hall effect measurements indicated that MnO_2 was a p-type conductor with 5 x 10^{14} cm⁻³ carrier concentration and 5 x 10^2 Ω cm resistivity.

The effect of the partial pressures of O₃, O₂ and H₂O was determined in a flow reactor system (Figure 1) with an aluminum reactor constructed to accept a catalyst of square geometry. The system incorporated an ozone generator (Atlantic Ultraviolet Corporation, Model II-OZ), a two-stage water saturator with temperature control (PolyScience Model 900), an ozone monitor (OREC, Model O3DM-100), an anemometer (Velocicalc, Model 8350), a differential pressure gauge (Modus Instruments, Inc., Model T40), and a compressor (Spencer Turbines, Model VB002S), and operated at atmospheric pressure.

The reactor operated at differential conditions with a total flow rate of $800~\rm cm^3~s^{-1}$. The effect of O_3 partial pressure on the rate of ozone decomposition at 313 K and mole fraction of H_2O of 0.029 (relative humidity of 40%) is reported in figure 2. The inlet concentration of O_3 in purified air was varied from 0.5 to 15 ppm (mole fraction = 0.5 x 10^{-6} to 15 x 10^{-6}), with total air flow rate constant at $800~\rm cm^3~s^{-1}$ (contact time = 0.04 s). The order in O_3 was determined to be 0.68 from the plot. At an ozone concentration of 8 ppm the rate was 1.24 µmol $g^{-1}~s^{-1}$ equivalent to a turnover rate of $1.1 \times 10^{-4}~s^{-1}$, assuming 100% dispersion of the supported MnO_2 .

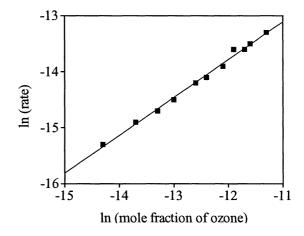


Figure 2. Plot of ln(rate) vs $ln(mole\ fraction\ of\ O_3)$.

The effect of O_2 partial pressure on the ozone conversion at 313 K and relative humidity 40% was obtained by varying the O_2 mole fraction from 0.21 to 0.50 with diluent N_2 in the inlet feed, while keeping the concentration of O_3 and the total flow rate constant at 4 ppm and 1000 cm³/s, respectively. The O_2 partial pressure did not change the conversion of O_3 (Figure 3).

The effect of H_2O partial pressure on the ozone decomposition at 313 K was studied by varying the H_2O mole fraction from 0 to 0.04 in the inlet feed, while keeping the

414 Chemistry Letters 1995

concentration of O_2 at 21%, O_3 at 2 ppm, and total flow rate at 800 cm³s⁻¹. Figure 3 shows that changing H_2O partial pressure had no effect on the conversion of O_3 .

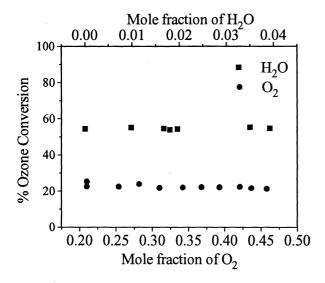


Figure 3. Effect of O₂ and H₂O on conversion of ozone.

Over a limited range of mole fractions ($y_{O3} = 0.5 \times 10^{-6}$ - 15 x 10⁻⁶ , $y_{O2} = 0.21$ - 0.5, $y_{H2O} = 0$ - 0.04), the rate of decomposition obeys the following expression:

$$r_{O3} = kP_{O3}^{0.68} P_{O2}^{0} P_{H2O}^{0}$$

The dependence of the rate on oxygen partial pressure is zero, but the exponent on the ozone partial pressure is close to 2/3, an unusual value. A simple rationalization is that the ozone is in equilibrium with three equivalent adsorbed oxygen atoms, and that these recombine in a rate-determining step to form O_2 .

$$O_3 + 3*$$
 k_2
 $O_2 + 2*$
 $r = k_2K_1^{2/3}(O_3)^{2/3}(L)$

In the scheme above, * represents catalytic sites and (L) the total concentration of sites. The derivation assumes the surface is almost bare, (L) = (*). The mechanism is unlikely because the

first step requires three *adjacent* empty sites, and because the reverse reaction to produce ozone is improbable. Furthermore, the formation of three equivalent oxygen atoms from a nonsymmetrical reactant seems difficult.

The kinetic rate expression allows only a limited number of possible reaction schemes. An alternative is presented below:

$$O_3 + 2*$$
 k_2
 $*O_2 + 0*$
 $*O_2 + *$
 k_3
 $*O_3 + 2*$
 $*O_4 + 2*$

The notable feature of this scheme is that the key intermediate *O_2 does not immediately desorb. We propose that this is because it has partial ionic (O_2^-,O_2^{2-}) character, and is stabilized by Coulombic interactions with the substrate. Such an intermediate was suggested earlier for ozone decomposition on silver 2 . The observation that MnO_2 is a p-type oxide, which would tend to stabilize anionic species, gives support to this hypothesis.

In summary, for MnO_2/Al_2O_3 the order of decomposition of ozone with respect to O_3 partial pressure was close to 2/3, while it was zero with respect to O_2 and H_2O . A mechanism involving the formation of an ionic intermediate with partial superoxide or peroxide character was suggested to explain the kinetics.

This work was supported by the Director, Division for Chemical and Thermal Systems of the National Science Foundation under Grant CTS-9311876

References and Notes

- R. E. Kirk and D. F. Othmer, Encyclopedia of Chemical Technology, vol 16, Wiley-Interscience Publication, 1981.
- S. Imamura, M. Ikebata, T. Ito, and T. Ogita, *Ind. Eng. Chem. Res.*, 30, 217 (1991).
- 3 P. H. Calderbank and J. M. O. Lewis, Chem. Eng. Sci., 31, 1216 (1976).
- 4 F. D. Toor, Pakistan J. Sci. Ind. Res., 13, 6 (1970).
- 5 T. H. Elmer, Ceram. Eng. and Sci. Proc., 7, 40 (1986)
- 6 M. D. Patil and I. M. Lachman, "Perspectives in Molecular Sieve Science", ed by W. H. Flank and T.E. Whyte, Toronto, Canada, 1988.